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Optically-induced Transmission Asymmetry

à Transmission change for CW 1540 nm probe.

• Complex pattern of frequency- and pump power-dependent oscillatory modes

• Backward–Forward difference up to ~23% at µW pump powers
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Transmission Asymmetry in Nano-opto-mechanical 
Metamaterials at µW Optical Power

In linear optics, the transmission of absorbers is identical in the forward and backward propagation directions.
We demonstrate a nonlinear metamaterial with intensity-dependent transmission asymmetry at 30 µW.

Summary
• Nanoscale displacements of meta-molecules lead to strong changes in metamaterial optical properties 

• Mechanical nonlinearity coupled to optical resonance provides giant optical nonlinearity

à Nonlinear asymmetric transmission at µW/µm2
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Asymmetric Transmission via Optomechanical Nonlinearity
Conventional approaches to asymmetric transmission

• Magnetic field (esp. the Faraday effect)

• Nonlinearity (@high light intensity)

• Mode/polarization conversion

 We utilize opto-mechanical nonlinearity:

• Strong nonlinearity at low intensity via coupling of optical and 
mechanical resonances in an all-dielectric metamaterial       

• Nanoscale structural reconfiguration driven by optical forces 
à directionally asymmetric change in optical properties

• Theory: Zhang, et al., Light Sci. Appl. 2, e96 (2013)

• Metamaterial of Si nano-bricks on
flexible, free-standing Si3N4 beams

• Optical forces induce nanometric
relative displacements of beams
differently for FWD and BWD
illumination directions

à Strong differential mode conversion

à Spectral dispersion of transmission
different for FWD/BWD directions
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• Experiment requires identical 
FWD/BWD paths & illumination 
conditions, i.e. power, spot size, 
polarization.

• Pulsed 1550 nm, 30 µW pump 
beams drives motion at beams’ 
mechanical resonance frequencies
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Q ~ 37

• Si/Si3N4 bilayer structured by 
focused ion beam milling

• Thermal (Brownian) motion 
detected at beams’ fundamental 
resonant frequencies 

• RMS displacements of ~250 pm

Mechanical resonance
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